tau numerical solution of volterra integro-differential equations with arbitrary polynomial bases
Authors
abstract
similar resources
Tau Numerical Solution of Volterra Integro-Differential Equations With Arbitrary Polynomial Bases
full text
Numerical Solution of Integro-Differential Equations with Local Polynomial Regression
In this paper, we try to find numerical solution of b d , . a y x p x y x g x K x t y t t y a a x b a t b d , . , a y x p x y x g x K x t y t t y a a x b a t b d x t y t t y a a or x by using Local polynomial regression (LPR) method. The numerical solution shows th...
full textApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
full textNumerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method. Numerical tests for demo...
full textAnalytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations
In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...
full textNumerical solution of weakly singular Volterra integro-differential equations with change of variables
We discuss a possibility to construct high order methods on uniform or mildly graded grids for the numerical solution of linear Volterra integro-differential equations with weakly singular or other nonsmooth kernels. Using an integral equation reformulation of the initial value problem, we apply to it a smoothing transformation so that the exact solution of the resulting equation does not conta...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 32
issue No. 1 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023